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ABSTRACT

Low probability of intercept (LPI) performance of a
direct-sequence code division multiple access (DS-
CDMA) system is investigated in this paper; both
chaotic and pseudorandom binary spreading se-
quences are considered. Several intercept receiver
structures, including energy detector, synchronous
and asynchronous, coherent and noncoherent, are
examined, and the expressions of the detection
probabilities are derived. The bit error rate (BER)
of the chaotic CDMA system is also investigated in
the paper.

1 INTRODUCTION

Covert operation is required for a transmitter to
protect the radio signals so that a commercial or
military interceptor has difficulty in detecting the
presence of the radio signals. Spread spectrum
modulation can be used in a radio system to reduce
the likelihood of intercept, as well as providing pro-
tection against jamming and interference [1]. Di-
rect sequence spread spectrum is one of the spread
spectrum techniques. Traditionally, a pseudoran-
dom (PN) sequence is used for direct-sequence code
division multiple access (DS-CDMA) systems, but
it lacks security due to fact that there are limited
number of available PN sequences and they show
periodic correlation properties. Studies in non-
linear dynamical systems have developed chaotic
theories. Chaotic sequences, based on chaotic theo-
ries, are nonbinary and nonperiodic sequences. The
number of available chaotic sequences for a DS-
CDMA systems can be very large. It is very difficult

for an interceptor to decipher the chaotic sequence
even if a chaotic function is known. The properties
of chaotic sequences provide advantages over the
conventional PN sequences based systems.

The detection probability of the presence of
transmitted waveforms from a single user using
a PN sequence has been investigated with differ-
ent kinds of interceptors/detectors, such as energy
detectors and optimum intercept receivers [2–4].
Chaotic spreading sequences have been proposed to
be used in DS-CDMA systems to improve the low
probability of intercept (LPI) performance [5–8].
LPI performance of a chaotic signal has been stud-
ied in [6]. Up to now however, no work has studied
the performance of a chaotic CDMA system (with
multiple users). In this paper, we investigate the
LPI and bit error rate (BER) performance of a
DS-CDMA system using chaotic sequences. Syn-
chronous communication environment (downlink)
over additive white gaussian noise (AWGN) channel
is considered. Both PN binary spreading sequences
and chaotic spreading sequences are examined.

2 CHAOTIC CDMA SYSTEM MODELS

2.1 Chaotic Sequences

Binary PN sequences are used in conventional DS-
CDMA systems. The most commonly used PN se-
quence is m-sequence which is generated by a lin-
ear feedback shift register and the state-machine
go through each register state by a deterministic
manner. The m-sequence is a periodic sequence
and its length is determined by the number of shift
registers. There are very limited number of m-
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sequences for a given shift register code generator.
By using code clock extraction techniques, an in-
tercepter can wipe out the spreading sequences and
leave out the unspreaded modulated user informa-
tion. In order to improve the covertness of the com-
munications, noise-like chaotic spreading sequences
can be used to conceal the signals. Several chaotic
maps, such as logistic map, triangular map, and
exponential map can be used to generate chaotic
sequences [9–11]. The logistic map is one of the
simplest and most widely studied. The chaotic se-
quences using logistic map can be sequentially gen-
erated by the following equation

xn+1 = α(1− xn) (1)

where 0 ≤ xn ≤ 1, 0 ≤ α ≤ 4, and α is called
bifurcation parameter. The generated sequences
can change dramatically depending one the value
of α. For 0 ≤ α ≤ 3.57, the sequence xn is peri-
odic with a period 2m for some integer m; while for
3.57 ≤ α ≤ 4, the sequence is nonperiodic and non-
converging [6, 9–11]. In this paper, we use α = 4
for logistic map and different chaotic sequences are
generated by different initial states x0. The prob-
ability density function (pdf) for some chaotic se-
quences has been derived. For example, the se-
quences generated by triangular map are uniform
over the internal [0,1]. The pdf of he sequences
based on logistic map is the following

f(xn) =
1

π
√

xn(1− xn)
(2)

In order to change the chaotic sequence into bipolar
signal which is suitable for spread spectrum, the
following transform is taken, an = 2xn − 1. The
corresponding pdf of an is

f(an) =
1

π
√

(1− an
2)

(3)

The sequence an is used as the chaotic DS-CDMA
spreading sequence throughout this paper.

2.2 Chaotic CDMA System

Considering the downlink of a chaotic DS-CDMA
system, all the transmitted signals from different
users are synchronized at the base station. If all
the K users are assumed to have same power the
transmitted signal can be expressed as follows

s(t) =
K∑

k=1

√
2Pak(t)bk(t) cos(ωct + φ) (4)

in which ak is the spreading sequence and the bk

is the information for the kth user. P is chosen

such that PE[α2(t)] is the average signal power,
ωc = 2πfc is the carrier frequency and φ is the
phase. The spreading sequence can be expressed as

ak(t) =
∞∑

n=−∞
ak(n)p(t− nTc − εTc) (5)

in which Tc is the chip period and p(t) is a unit-
amplitude pulse of duration Tc seconds. The chip
epoch εTc can be modeled by a random variable
ε, uniformly distributed in [0,1). The intended re-
ceiver knows the spreading sequence, and it can re-
cover the information bk(t) by multiplying the ak(t)
to the received signal. Since the chaotic spreading
sequence ak(t) is very difficult for intercepter to get,
the information bk(t) is concealed.

2.3 Detection Schemes

Based on the incident waveforms, an intercept re-
ceiver must decide between the signal-plus-noise
(H1) and the noise-only hypothesis (H0)

r(t) =
{ ∑K

k=1

√
2Pak(t) cos(ωct + φ) + n(t) H1

n(t) H0

(6)
where n(t) is bandpass AWGN with one-sided
power spectral density of N0 W/Hz. The obser-
vation time is T seconds, which is assumed to be
an integer multiple of chip duration. T = NTc and
N is positive integer. There is a strong assumption
embedded in (6), namely, under hypothesis H1, the
signals from all the users are present and all the
user information bit bk(t) = 1 during the whole
observation interval. This eliminates the possibil-
ity of the signal either starting of ending during
the observation time and the case that some users
are transmitting different information bit in [0, T ].
Such an assumption is important because it is the
case that the group communication can be detected
more easily by interceptors. In another word, it is
the worst case for the covert CDMA system. It also
provides meaningful and fairly simple comparative
conclusions which can be extended to more general
models.

3 LPI PERFORMANCE OF A CHAOTIC
CDMA SYSTEM

The LPI performance of a chaotic CDMA system
is studied in this section. The configurations of in-
tercept detectors depend on the amount of known
features of the signals. For example, an energy de-
tector only assumes that the signals occupy a band-
width of W and exist for a time duration T . Other
intercept receivers could use the known features of



−30 −25 −20 −15 −10 −5
10

−2

10
−1

10
0

SNR γ
c
 (chip)

D
et

ec
tio

n 
pr

ob
ab

ili
ty

PN Coherent
Chaotic Coherent
PN Nonoherent
Chaotic Noncoherent

Figure 1: LPI performance of synchronous inter-
cept receiver with PFA = 0.01, N = 1000, and the
number of users K = 4.

the spread spectrum signals, such as the carrier fre-
quencies, chip rates, and T = NTc, where N is the
number of chips in one observation. In the opti-
mum detection for binary sequences, a receiver im-
plements a likelihood ratio test (LRT), which is a
procedure based on statistical signal testing of hy-
potheses [2], [4], [5]. In the following, we evaluate
five intercept receivers for chaotic signal detection,
considering coherent (known φ) and non-coherent,
synchronous (ε = 0) and asynchronous detections,
and energy detections.

3.1 Synchronous Coherent Intercept Re-
ceiver

When synchronous coherent intercept receivers are
used to detect the presence of chaotic signals, both
the chip epoch εTc and the carrier phase φ are as-
sumed to be known by the intercepter, and we have
z(t) = r(t) cos(ω0t + φ) at the intercepter side. For
binary sequence detection, a likelihood ratio test is
developed in [4]. For non-binary sequence detection
(using binary correlation), following [6], we are able
to establish that the decision between H0 and H1

can be made based on the rule below

Λ(z(t)) =
N∏

j=1

exp(−PTc

N0
) cosh(

2
√

P

N0
rj)

H1

≷
H0

Λ0

(7)
where Λ0 is a threshold and rj =

∫ jTc

(j−1)Tc
z(t)dt.

For typical chip signal-to-noise ratio (SNR) below
-5 dB, we have an approximated expression for log-

LRT [4]

λ =
N∑

j=1

r2
j

H1

≷
H0

λ0 (8)

For large values of N , λ can be approximated as
Gaussian for both noise alone and signal-plus-noise
cases and this approximation is quite accurate [2],
[4]. Therefore the detection probability, PD, can be
determined via a Q function. Chaotic sequences for
different users are assumed to have perfect correla-
tion

E[ai(t)aj(t)] = 0 (9)

For the random variable λ, we are able to find its
mean and variance
{

mλ = N(N0Tc)(0.5 + γcKCδk,1)

σ2
λ = N(N0Tc)2[0.5 + (2KCγc + KDγ2

c )δk,1]

where C = E[a2
n]/E[|an|], D = Var[a2

n]/E2[|an|],
δk,1 is the Kronecker delta function, which implies
the presence of a signal (H1) for k = 1 or the ab-
sence of the signal (H0) for k = 0, and the chip
SNR

γc =
PTcE[|an|]

N0
(10)

Notice that in deriving or implementing (10),
we assume that a binary correlating function
(Sign(

∑K
k=1 ak(t))) is used to detect a non-binary

chaotic sequence (
∑K

k=1 ak(t)). Therefore, the de-
tectors for binary spreading sequences are applied
directly to detect the presence of chaotic spread-
ing signals. This approach is proposed in [6] to
simplify the receiver structure. Otherwise, an opti-
mum chaotic receiver structure, which requires the
exact correlating functions matching to the received
sequences, is not feasible because of the infinite se-
quence combinations of the non-binary chaotic sig-
nals. In deriving the detection probability, we first
find a threshold level λ0 by setting an acceptable
false alarm probability PFA. Using the obtained λ0,
the detection probability PD is derived as a func-
tion of PFA

PD = Q

(
Q−1(PFA)−√2NγcKC√

1 + 4KCγc + 2KDγ2
c

)
(11)

where Q(x) =
∫∞

x
1√
2π

exp(−t2/2)dt. It is also in-
teresting to note that this binary correlating ap-
proach and its related performance analysis are ap-
plicable to any DS-CDMA system with multilevel
spreading sequences.



3.2 Synchronous Noncoherent Intercept
Receiver

We relax the assumption the carrier phase of the
chaotic CDMA waveforms is know by the inter-
cepter. In this case, the carrier phase φ is modeled
as a random variable with a uniform distribution
in [0, 2π). Match filters followed by envelope detec-
tors are used to combine with the binary correlation
of noncoherent detection of chaotic CDMA signals.
This receiver structure is proposed in [6] and the
decision rule is as (8) with

rj =
√

r2
Ij

+ r2
Qj

where

[
rIj

rQj

]
=
√

2
∫ (j+1)Tc

jTc

r(t)
[

cosωct
sin ωct

]
dt

and j = 0, ..., N − 1. The mean and variance of the
decision statistics λ is

{
mλ = N(N0Tc)(1 + γcKCδk,1)

σ2
λ = N(N0Tc)2[1 + (2KCγc + 0.5KDγ2

c )δk,1]

The detection probability of synchronous noncoher-
ent chaotic CDMA signals is obtained as

PD = Q

(
Q−1(PFA)−√NγcKC√
1 + 2KCγc + 0.5KDγ2

c

)
(12)

3.3 Asynchronous Coherent Intercept Re-
ceiver

In most cases, the chip timing (epoch) ε is unknown
by the intercepter. It can be modeled as a ran-
dom variable uniformly distributed in [0, Tc). Asyn-
chronous coherent intercept receiver is investigated
in [4]. Two epoches values ε = 0 and ε = 0.5Tc are
assumed to get the analytical results. In this paper,
we first derive a conditional detection probability
for a given chip epoch ε. Then the final detection
probability is derived by averaging the conditional
detection probability over all possible chip epoch
ε values. The detection decision variables can be

found in [6] as

λ =
N−1∑

j=0



PT 2

c


ε2

(
K∑

k=1

αk(j)−
K∑

k=1

αk(j + 1)

)2

+2

(
K∑

k=1

αk(j)−
K∑

k=1

αk(j + 1)
K∑

k=1

αk(j + 1)ε

)

+

(
K∑

k=1

αk(j + 1)

)2

 + n2

I + 2
√

PnITc×
(

K∑

k=1

αk(j)ε +
K∑

k=1

αk(j + 1)(1− ε)

)}

(13)
where nI =

√
2

∫ Tc

0
n(t) cos 2πf0tdt. The mean and

variance of λ are derived as follows

{
mλ = N(N0Tc)(0.5 + γcKC(1− 2ε + 2ε2)δk,1)

σ2
λ ≈ N(N0Tc)2[0.5 + 2KCγc(1− 2ε + 2ε2)δk,1]

and the detection probability conditioned on ε is

PD|ε = Q

(
Q−1(PFA)−√2N(1− 2ε + 2ε2)γcKC√

1 + 4KCγc(1− 2ε + 2ε2)

)

(14)
If ε is assumed be uniformly distributed in [0, 1), the
average detection probability of the chaotic CDMA
system using an asynchronous coherent intercept
receiver is

PD =
∫ 1

0

Q

(
Q−1(PFA)−√2N(1− 2ε + 2ε2)γcKC√

1 + 4KCγc(1− 2ε + 2ε2)

)
dε

(15)

3.4 Asynchronous Noncoherent Intercept
Receiver

The most natural problem formulation is that the
chip epoch ε and carrier phase φ are random vari-
ables. Followed by (12) in [6], the decision statistics



can be derived as

λ =PT 2
c

N−1∑

j=0


ε2

(
K∑

k=1

αk(j)−
K∑

k=1

αk(j + 1)

)2

+

(
K∑

k=1

αk(j)

)2



+ 2
√

PTcε

N−1∑

j=0

(
K∑

k=1

αk(j)−
K∑

k=1

αk(j + 1)

)
×

(
Tc

√
P

K∑

k=1

αk(j + 1) + N(nI cosφ + nQ sin φ)

)

+ 2
√

PTc

N−1∑

j=0

[(
K∑

k=1

αk(j + 1)

)

× (nI cosφ + nQ sin φ)] + N(n2
I + n2

Q)
(16)

where nQ =
√

2
∫ Tc

0
n(t) sin 2πf0tdt. We then de-

rived the mean and variance of λ as
{

mλ = N(N0Tc)(1 + γcKC(1− 2ε + 2ε2)δk,1)

σ2
λ ≈ N(N0Tc)2[1 + 2KCγc(1− 2ε + 2ε2)δk,1]

The detection probability of the chaotic CDMA sig-
nals conditioned on ε is found as

PD|ε = Q

(
Q−1(PFA)−√N(1− 2ε + 2ε2)γcKC√

1 + 2KCγc(1− 2ε + 2ε2)

)

(17)
and the average detection probability using asyn-
chronous noncoherent receiver is

PD =
∫ 1

0

Q

(
Q−1(PFA)−√N(1− 2ε + 2ε2)γcKC√

1 + 2KCγc(1− 2ε + 2ε2)

)
dε

(18)

3.5 Energy Detector

Energy detector is one of the simplest detectors
whose block diagram can be found in [2] and [3].
It consits of a bandpass filter, a square-law device,
a finite-time integrator, a sampler that samples the
integrator output at the end of the integration in-
terval T, and a threshold comparison device [2].
The decision statistics is the sampler output which
can be written as

V =
2

N0

∫ T

0

r2(t)dt =
2

N0

N−1∑

j=0

∫ (i+1)Tc

iTc

r2(t)dt

(19)
When the integrator time-bandwidth product WT
is large, V is also approximated as Gaussian, and
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Figure 2: LPI performance of a chaotic CDMA sys-
tem with different number of users. PFA = 0.01
and N = 1000.

this approximatioin is quite accurate [2], [3]. Fol-
lowing the derivation in [6] we get the mean and
variance of the decision statistics as

mV = 2WT

(
1 +

KPE[α2
n]

N0W
δk,1

)

σ2
V = 2WT + 4KPT

(
PTVar[α2

n]
N2

0

+ 2
E[α2

n]
N0

)
δk,1

The detection probability is

PD = Q


 Q−1(PFA)−

√
N
2 Kγc√

1 + KCγc + NHKγ2
c

2


 (20)

where γc = PTcE[α2
n]/N0 and H =

Var[α2
n]/E2[α2

n].

4 BER PERFORMANCE OF A
CHAOTIC CDMA SYSTEM

BER performance of CDMA systems using PN se-
quences has been extensively studied. Standard
Gaussian approximation (SGA), improved Gaus-
sian approximation (IGA), and simplified IGA
(SIGA) have been used to model the interference
statistics [12]. In this section, we study the down-
link performance of a chaotic CDMA system which
all the signals are transmitted with the same chip
epoch. The received signal at downlink of a chaotic
CDMA system can be written as

r(t) =
K∑

k=1

√
2Pak(t)bk(t) cos(ωct + φ) + n(t) (21)

Without loss the generality, we study the perfor-
mance of the first intended receiver. It knows the



spreading sequence α1(t), carrier frequency ωc and
phase φ. The decision statistics at the reference
receiver after demodulation and despreading is

Z1 =
√

P

(
G∑

n=1

α2
1(n)

)
b1(t)

+
K∑

k=2

√
P

(
G∑

n=1

ak(n)a1(n)

)
bk(t) + n1

(22)
where G is the processing gain and n1 =∫ GTc

0

√
2n(t) cos(ωct+φ)dt is AWGN with one-sided

power spectral density of GN0 W/Hz and bk(t) is
the binary bit information from the kth user. If
autocorrelation function of chaotic sequences with
length G is defined as

Ri(l) =
1
G

G∑
n=1

ai(n)ai(n + l) (23)

and cross-correlation between sequence αk and αj

is defined as

Rk,j(l) =
1
G

G∑
n=1

ak(n)aj(n + l) (24)

then the decision statistics can be written as

Z1 = G
√

PR1(0)b1(t) +
K∑

k=2

G
√

PRk,1(0)bk(t) + n1

(25)
If b1(t) = 1 the error occurs only is Z1 < 0. For
large number of K, Z1 can be modeled as a Gaus-
sian random variable. Its mean and variance is
{

mZ1 = G
√

PTcE[α2
1]

σ2
Z1

= GPT 2
c Var[α2

1] + GKPT 2
c E2[α2

1] + GN0W

The BER can be calculated as

Pe = Q




√
GγcE[α2

1]√
γcVar[α2

1] + KγcE2[α2
1] + 1


 (26)

where the chip SNR γc = PTc

N0
and the above result

is based on SGA method.

5 NUMERICAL RESULTS

Numerical results of the performance for a chaotic
CDMA system with logistic map is presented in this
section. The logistic map chaotic sequences have
C = 0.79, D = 0.32, and H = 0.8. Random binary
sequences have C = 1, D = 0, and H = 0. The
LPI performance of binary a CDMA system and a
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Figure 3: LPI performance vs. BER performance of
a chaotic CDMA system. PFA = 0.01, N = 1000,
and processing gain G = 100.

chaotic CDMA system is compared in Fig. 1. Bet-
ter LPI performance is observed for chaotic CDMA
system. The chip SNR improvement is about 1
dB.Detection probability of a chaotic CDMA sys-
tem with different number of users is plotted in Fig.
2. Total power of 1, 2, and 4 users is assumed to
be same. It shows that the LPI performance is im-
proved with increased number of users. In another
word, if the total power of chaotic CDMA system is
constant, the more users are communicating in the
system the more difficult an intercepter will detect
its presence. Fig. 3 plots the LPI performance ver-
sus BER performance of a chaotic CDMA system.
Cases of different number of users with the same in-
dividual power are compared. The processing gain
G = 100 is assumed. It is seen that for the same
BER level the more users the system supports the
worse LPI performance the system has. It means
chaotic CDMA systems have to sacrifice LPI per-
formance to gain better communication quality. It
is also true for traditional CDMA systems.

6 CONCLUSIONS

The performance of a chaotic CDMA system is
studied in this paper. Detection probability is
evaluated based on five different intercept receiver
structures, including synchronous/asynchronous
and coherent/noncoherent receivers and energy de-
tector. Analytical results shows chaotic CDMA sys-
tems have better LPI performance than traditional
binary PN spreading CDMA systems. It is seen
from numerical results that the chaotic CDMA sys-
tem will be less likely to be detected if it increases



the number of users while maintaining the same to-
tal power. BER performance of a chaotic CDMA
system is also investigated in this paper and it is
seen that the system has to sacrifice its communi-
cation quality to maintain its LPI performance.

References

[1] T. Tsui and T. Clarkson, “Spread-spectrum
communication techniques,” IEE Electron-
ics and Communication Engineering Journal,
vol. 6, no. 1, pp. 3–12, Feb. 1994.

[2] R. L. Peterson, R. E. Ziemer, and D. E. Borth,
Introduction to Spread Spectrum Communica-
tions. NJ: Prentice Hall, 1995.

[3] G. Heidari-Bateni, “Chaotic signals for digital-
communications,” Ph.D. dissertation, Purdue
University, Lafayette, IN, 1992.

[4] A. Polydoros and C. L. Weber, “Detection
performance considerations for direct-sequence
and time-hopping LPI waveforms,” IEEE J.
Select. Areas Commun., vol. 3, no. 5, pp. 727–
744, Sept. 1985.

[5] N. F. Krasner, “Optimal detection of digitally
modulated signals,” IEEE Trans. Commun.,
vol. 30, no. 5, pp. 885–895, May 1982.

[6] J. Yu and Y.-D. Yao, “Detection performance
of chaotic spreading LPI waveforms,” IEEE
Trans. Wireless Commun., vol. 4, no. 2, pp.
390–396, Mar. 2005.

[7] M. K. Tsatsanis and G. B. Giannakis, “Blind
estimation of direct sequence spread spectrum
signals in multipath,” IEEE Trans. Signal Pro-
cessing, vol. 45, no. 5, pp. 1241–1252, May
1997.

[8] G. Kolumban, M. P. Kennedy, Z. Jako, and
G. Kis, “Chaotic communications with corre-
lator receivers: theory and performance lim-
its,” Proc. IEEE, vol. 90, no. 5, pp. 711–732,
May 2002.

[9] G. Heidari-Bateni and C. D. McGillem, “A
chaotic direct-sequence spread-spectrum com-
munication system,” IEEE Trans. Commun.,
vol. 42, no. 2/3/4, pp. 1524–1527, 1994.

[10] F. C. M. Lau, M. M. Yip, C. K. Tse, and S. F.
Hau, “A multiple - access technique for differ-
ential chaos-shift keying,” IEEE Trans. Cir-
cuits Syst. I, vol. 49, no. 1, pp. 96–104, Jan.
2002.

[11] G. Mazzini, G. Setti, and R. Rovatti, “Chaotic
complex spreading sequences for asynchronous
DS-CDMA - Part I: System modeling and re-
sults,” IEEE Trans. Circuits Syst. I, vol. 44,
no. 10, pp. 937–947, Oct. 1997.

[12] J. Holtzman, “A simple, accurate method to
calculate spread-spectrum multiple-acess error
probabilities,” vol. 40, no. 3, pp. 461–464, Mar.
1992.


